产品分类
山东合运电气有限公司
手机:15588886921(同微信)
官网:www.nibiandianyuan.cn
邮箱:2466458158@qq.com
双二阶滤波器
时间:2022-10-20 人气: 来源:山东合运电气有限公司
{\displaystyle G(s)={\frac{p_{2}*s^{2}+p_{1}*s+p_{0}}{s^{2}+e_{1}*s+e_{0}}}}{\displaystyle G(s)={\frac{p_{2}*s^{2}+p_{1}*s+p_{0}}{s^{2}+e_{1}*s+e_{0}}}}
或
{\displaystyle G(s)={\frac{p_{2}*s^{2}+p_{1}*s+p_{0}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}{\displaystyle G(s)={\frac{p_{2}*s^{2}+p_{1}*s+p_{0}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}
分子二项式中系数{\displaystyle p_{2}}p_{2},{\displaystyle p_{1}}p_{1}决定滤波器的类型:
双二阶低通滤波器
{\displaystyle G(s)={\frac{p_{0}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}{\displaystyle G(s)={\frac{p_{0}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}
其衰减函数为\。
{\displaystyle A(\Omega)=G(j*\omega)*G(-j*\omega)={\frac{Q^{2}}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}{\displaystyle A(\Omega)=G(j*\omega)*G(-j*\omega)={\frac{Q^{2}}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}
其中{\displaystyle\Omega={\frac{\omega}{\omega _{0}}}}{\displaystyle\Omega={\frac{\omega}{\omega _{0}}}}
无源双二阶低通滤波器
无源双二阶低通滤波器由电阻、电容和电感元件组成[3]
{\displaystyle p_{0}={\frac{1}{LC}}}{\displaystyle p_{0}={\frac{1}{LC}}}
{\displaystyle\omega _{0}={\sqrt{\frac{1}{LC}}}}{\displaystyle\omega _{0}={\sqrt{\frac{1}{LC}}}}
{\displaystyle Q=R*{\sqrt{C/L}}}{\displaystyle Q=R*{\sqrt{C/L}}}
有源双二阶低通滤波器
有源双二阶低通滤波器由运算放大器、电容、电感和电阻构成。
双二阶高通滤波器
双二阶高通滤波器的传递函数为
{\displaystyle G(s)={\frac{s^{2}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}{\displaystyle G(s)={\frac{s^{2}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}
双二阶高通滤波片的频率响应:
{\displaystyle A(\Omega)={\frac{-Q^{2}*\Omega^{4}}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}{\displaystyle A(\Omega)={\frac{-Q^{2}*\Omega^{4}}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}
{\displaystyle p_{2}=1}{\displaystyle p_{2}=1}
{\displaystyle\omega={\frac{1}{\sqrt{LC}}}}{\displaystyle\omega={\frac{1}{\sqrt{LC}}}}
{\displaystyle Q=R*{\sqrt{C/L}}}{\displaystyle Q=R*{\sqrt{C/L}}}
双二阶带通滤波器
双二阶带通滤波器的传递函数为。
{\displaystyle G(s)={\frac{p_{1}*s}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}{\displaystyle G(s)={\frac{p_{1}*s}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}
{\displaystyle A(\Omega)={\frac{\Omega^{2}*Q^{2}}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}{\displaystyle A(\Omega)={\frac{\Omega^{2}*Q^{2}}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}
相角:
{\displaystyle\theta:=90-180*arctan({\frac{\omega*\omega _{0}}{(Q*(\omega _{0}^{2}-\omega^{2})}})/\pi}{\displaystyle\theta:=90-180*arctan({\frac{\omega*\omega _{0}}{(Q*(\omega _{0}^{2}-\omega^{2})}})/\pi}
{\displaystyle p_{1}={\frac{1}{CR}}}{\displaystyle p_{1}={\frac{1}{CR}}}
{\displaystyle\omega={\frac{1}{\sqrt{LC}}}}{\displaystyle\omega={\frac{1}{\sqrt{LC}}}}
{\displaystyle Q=R*{\sqrt{C/L}}}{\displaystyle Q=R*{\sqrt{C/L}}}
双二阶带阻滤波器
双二阶带阻滤波器的传递函数为<refnname=rs>Rolf Schaumann,H.Xiao,M.E.van Valkenburg,p225</ref>
{\displaystyle G(s)={\frac{p_{2}*s^{2}+p_{0}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}{\displaystyle G(s)={\frac{p_{2}*s^{2}+p_{0}}{s^{2}+{\frac{\omega _{0}}{Q}}*s+\omega _{0}^{2}}}}
其频率响应
{\displaystyle A(\Omega)={\frac{Q^{2}*(\Omega^{4}-2*\Omega^{2}+1)}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}{\displaystyle A(\Omega)={\frac{Q^{2}*(\Omega^{4}-2*\Omega^{2}+1)}{(\Omega^{4}*Q^{2}-2*\Omega^{2}*Q^{2}+\Omega^{2}+Q^{2})}}}
相角:
{\displaystyle theta:=180*arctan({\frac{\Omega}{(Q*(\Omega^{2}-1)}})/\pi}{\displaystyle theta:=180*arctan({\frac{\Omega}{(Q*(\Omega^{2}-1)}})/\pi}
无源双二阶带阻滤波器
无源双二阶带阻滤波器
双二阶带阻滤波器的频率响应
双二阶带阻滤波器的频率响应
双二阶带阻滤波器的相角
双二阶带阻滤波器的相角
{\displaystyle p_{2}=1}{\displaystyle p_{2}=1}
{\displaystyle\omega={\frac{1}{\sqrt{LC}}}}{\displaystyle\omega={\frac{1}{\sqrt{LC}}}}
{\displaystyle Q=R*{\sqrt{C/L}}}{\displaystyle Q=R*{\sqrt{C/L}}}
关于双二阶滤波器,小编为大家就分享这些。欢迎联系我们合运电气有限公司,以获取更多相关知识。
下一篇:双向器